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X ABSTRACT

; " This report documents two Fortran subroutines -- FDCALC and FDCORE -- that compute a set of
d forward-difference intervals to be used in minimizing a smooth function. The primary subroutine

PDCORE, which is called repeatedly by FDCALC, produces a suitable interval for a univariate

j function, as well as approximations to the first and second derivatives.
X
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' tFDCALC and FDCORE are available from the Office of Technology Licensing, 105 Encina Hall,
; Stanford University, Stanford, California, 94305.
The material contained in this report is based upon research supported by the U.S. Department
. of Encrgy Contract DE-AC03-765100:326, PA No. DE-AT03-76I1XR72018; National Science Foun-
'3 dation Grants MCS-7926009 and 1CS-8012974; the Office of Naval Rescarch Grant N00014-75-
n C-0267; and the U.S. Army Research Olfice Contract DAAG29-79-C-0110.
L 4

o /s
s a

..*

LR LRI PO I N I I T Y Y L e .
'4’-'\‘ P RN ' .‘Q.'..v A YA o




A b O st s e A i A A AR S At SR iadCh et T A S O e P e A AR NI DS R S S

laA A R A
o™ s R R Y A e T ™ R Tt s e . TR S - « e et oL - PR R T L

B
3 1. PURPOSE FDCORE/1
" { 1. PURPOSE |
;‘ When minimising a smooth function whose derivatives are not available, it is common to use
. finite-difference approximations in a gradient-based method. However, certain “standard” choices
for the finite-difference intervals may produce unnecessarily inaccurate results. The subroutines
_ documented in this report are an implementation of the method of Gill et al. (1983), which is
é designed to compute “good” intervals for forward-difference approximations to the gradient.
o Our implementation is based on a reverse-communication control structure. The “core” sub-
oo routine FDCORE (which treats a single variable) must be called repeatedly by an outer subroutine
5 in order to obtain a set of intervals for multivariate optimization. The outer subroutine FDCALC
: described in this report should be suitable for many applications. If it is not, the user may develop
;3:' an outer subroutine that caters for the special needs of his problem.
N The method used by FDCORE requires at least three evaluations of the function for each
i component of the gradient, even for a well scaled problem. An optimization algorithm that
.: required this number of function evaluations at every iteration would be uncompetitive with
: alternative non-derivative methods. Fortunately, in practice several factors make it possible
-‘r* to obtain adequate gradient approximations with only one function evaluation per component.
First and most 'mportant, it is our experience that, for many functions, the finite-difference
. intervals generated by the method of FDCORE do not vary significantly from one iteration to the
3-f next. Second, these intervals do not usually differ widely from the “optimal” intervals. Finally,
5:, finite-difference gradient methods can generally make satisfactory progress as long as the overall
o gradient vector has a reasonable level of accuracy; it is not essential for each component of the
o gradient to have close-to-maximal accuracy at every iterate.
'3 Based on these observations, we suggest that FDCALC (or its equivalent) should be executed
: at a “typical” point (usually, the initial point of the minimisation). The set of intervals obtained
o should then be used to compute forward-difference approximations at subsequent iterates.
We emphasize that these subroutines are not intended to compute the most accurate possible
"; estimate of the gradient at a single point. The general problem of finding approximate derivatives
j\ by finite differences is known as numerical differentiation. A recent discussion of methods for
5: numcrical differcntiation is given by Lynecss (1977) (for other references, sce Gill, Murray and
: Wright, 1981). Many automatic differcntiation routines require a significant number of function
% " evaluations  often, at least ten per derivative  and hence are not appropriate within a finite-
difference gradient method.
-
o
)
X
]
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FDCORE/s 2. DESCRIPTION

;-5 2. DESCRIPTION

) ‘:- We shall briefly summarise the procedure of FDCORE applied to a univariate function f at
-3 the point z. (In order to obtain a set of intervals for the function F(z), where z is an n-vector,

» the procedure is applied to each component of z, keeping the other components fixed.) Roughly
.: speaking, the method is based on the fact that the bound on the relative truncation error in
::,:? the forward-difference approximation tends to be an increasing function of A, while the relative
.3 condition error bound is generally a decreasing function of A.

) The “best” interval A, is given by

=

where & is an estimate of f”(z), and ¢, is an estimate of a good bound on the absolute error
_:::*;} associated with computing the function (for a discussion of ¢, see Chapter 8 of Gill, Murray and
_ Wright, 1981). Given an interval A, ® is defined by the second-order difference approximation
o= [+ R) —2/(2) + f(z—h)
= A .

5 .

v_gl The dccision as to whether a given value of ® is acceptable involves C(®), the following bound
N3 on the relative condition error in &®:

A C@)= Aea 2)

= mey ;

oo’

> (When @ is sero, C'(®) is taken as an arbitrarily large number.)

:ﬁ The procedure selects the interval h, (to be used in computing ®) from a sequence of trial
A intervals {h;}. The initial trial interval is taken as 10h, where
- b=+ |zl)\ [ —2 . 3
w (The quantities 7 and w are discussed later.) The value of C(®) for a trial value A, is defined as
g “acceptable” if it lies in the interval [.001,.1]. In this case, h, is taken as Ay, and the current value
’:: of @ is used to compute h, from (1). If G(®) is unacceptable, the next trial interval is chosen so
: that the relative condition error bound will either decrease or increase, as required. If the bound
S
0 on the relative condition error is too large, a Jarger interval is used as the next trial value in an

attempt to reduce the condition error bound. On the other hand, if the relative condition error
“ bound is too small, A, is reduced.
f:: The procedure will fail to produce an acceptable value of C(®) in two situations. Firstly, if
. 1”(z) is extremely small, then C(®) may never become small, even for a very large value of the
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3. DESCRIPTION FDCORE/S

interval. Alternatively, C(®) may never exceed .001, even for a very small value of the interval.
This usually implies that f”(z) is extremely large; and occurs most often near a singularity.

As a check on the validity of the estimated first derivative, the procedure provides a com-
parison of the forward-difference approximation computed with A, and the central-difference
approximation computed with A,. If these values do not display some agreement, neither can be
considered reliable.

The parameters 7 and w in (3) are local variables ETA and OMEGA of subroutine FDCORE; they
are both set to 1 with DATA statements, and may be changed if appropriate (see Section 10).
Other aspects of the algorithm may also be adjusted by changing the values of local variables
in FDCORE. In particular, KMAX defines the maximum number of trial intervals, BADLO and BNDUP
define the range of acceptable values for C(®), and RHO defines the factor by which A, is changed
at each iteration.
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FDCORE/4 3. SPECIFICATION OF FDCALC

Sy

8. SPECIFICATION OF FDCALC

SUBROUTINE FDCALC( FUN, MSGLVL, N, EPSA, X,
NOMF, NUMOK, INFO,
FX, GRAD, HCNTRL, HESSD, HFORW )

LN N w2,

o e

! EXTERNAL FUN
3 INTEGER MSGLVL, N, NUMF, NUMOX
INTEGER INFO(N)
R REAL EPSA, FX
REAL X(N), GRAD(N), HCNTRL(N), HESSD(N), HFORW(N)

y (The specification of a parameter as REAL should be interpreted as working precision, which
- may be DOUBLE PRECISION in some circumstances.)
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4. INPUT PARAMETERS OF FDCALC FDCORE/s

4. INPUT PARAMETERS OF FDCALC

4 | is a user-provided subroutine that must define the function for which the gradient is to
be approximated. FUN must be declared as EXTERNAL in the routine that calls FDCALC.
The specification of FUM is:

SUBROUTINE FUN ( N, X, FX )

INTEGER |
REAL FX
REAL b {{ )

where
N is the number of variables;
FX should be set to the value of the function evaluated at X;
X is the vector of N variables at which the function is to be evaluated.

MSGLVL determines the level of printout from FDCALC. If MSGLVL = 0, there is no printout
from FDCALC; if MSGLVL = 1, a summary is printed of the results for each variable. If
MSGLVL = 2, a full debug printout is produced by FDCALC and FDCORE.

| is the number of variables (N must be positive).

EPSA is a positive number that should be a good bound on the absolute error associated with
computing the function F at z. In general, EPSA should not be less than ¢, (1 + |F(z)]),
where ¢,, is the machine precision. A more detailed discussion of EPSA, and of methods
for computing it, is given in Chapter 8 of Gill, Murray and Wright (1981).

X is an array of length N that contains the vector of variables at which the set of intervals
should be computed.
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FDCORE/S 3. OUTPUT PARAMETERS OF FDCALC

§. OUTPUT PARAMETERS OF FDCALC

~ gives the total number of function evaluations required to compute the final set of

intervals.

gives the number of variables for which the intervals were acceptable. If NUMOK = N,
satisfactory intervals were obtained for all the variables.

is an integer array of length N whose j-th component is set to the final value of INFORM
from FDCORE for the j-th variable. The meaning of each value is explained under INFORM
in Section 8.

is the value of the function evaluated at the input vector X.

is an array of length N whose j-th component contains the best estimate of the first
partial derivative for the j-th variable.

is an array of length N whose j-th component is the best interval found for computing
a central-difference approximation to the partial derivative for the j-th variable.

is an array of length N whose j-th component is the estimate of the second partial
derivative with respect to the j-th variable (i.e., the j-th diagonal element of the Hessian
matrix V2F(z)).

is an array of length N whose j-th component is the best interval found for computing
a forward-difference approximation to the partial derivative for the j-th variable.
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6° SPECIFICATION OF Fi. ORE FDCORE/?

6° SPECIFICATION OF FDCORE

SUBROUTINE FDCORE( DEBUG, EPSA, FX, X,
IENTRY, INFORM, ITER,
CDEST, CDSAVE, ERRBND, FBACK, FDOPT,
FDSAVE, FFORW, H, HOPT, HPHI, HSAVE,
OLDH, SDEST, SDSAVE )

LOGICAL DEBUG
INTEGER IENTRY, INFORM. ITER
REAL EPSA, FX, X,

CDEST, CDSAVE, ERRBND, FBACK, FDOPT,
FDSAVE, FFORW, H, HOPT, HPHI, HSAVE,
OLDH, SDEST, SDSAVE

(The specification of a parameter as REAL should be interpreted as working precision, which
may be DOUBLE PRECISION in some circumstances.)

* This section need not be read by those calling FDCALC directly.
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FDCORE/8 7° INPUT PARAMETERS OF FDCORE :

7% INPUT PARAMETERS OF FDCORE

DEBUG is a logical variable that should be set to .TRUE. if a detailed printout is desired. If
DEBUG is .FALSE., there is no printout from FDCORE.

EPSA is a positive number that should be a good bound on tize absolute error associated with
computing the function at X. In general, EPSA should not be less than €,(1 + |f(z)|),
where ¢,, is the machine precision. A more detailed description of EPSA, and techniques
for computing it, are given in Chapter 8 of Gill, Murray and Wright (1981). The value
of EPSA must not be changed until after the final exit from FDCORE for a given point.

FX must be set to the value of the function at the point where the derivative is to be
approximated. The value of FX must not be altered until after the final exit from
FDCORE for a given point.

X must be set to the value of z (the point where the derivative is to be approximated).
The value of X must not be altered until after the {inal exit from FDCORE for a given
variable.

* This section need not be read by those calling FDCALC directly. k
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8’ INPUT/OUTPUT PARAMETERS OF FDCORE FDCORE/»

’i‘. INPUT/OUTPUT PARAMETERS OF FDCORE

Many of the following parameters are included in the calling sequence of FDCORE simply to
allow communication between iterations. For such a parameter, the description below includes
only the meaning of the parameter on exit from FDCORE.

IENTRY controls the logic of FDCORE. On entry to FDCORE, IENTRY designates the portion of
FDCORE to be executed. IENTRY must be set to zero before the first call of FDCORE for
each variable. Thereafter, IENTRY should not be altered by the calling routine. On
exit from FDCORE, IENTRY indicates the action to be taken by the calling routine, and
thus the value of IENTRY should be tested after each call of FDCORE. If IENTRY = 5 on
exit from FDCORE, the procedure has terminated (and the parameter INFORM described
below indicates the reason for termination). If IENTRY < 4, FDCORE should be called
again. If IENTRY = 4, a new value must be assigned to FFORW before calling FDCORE. If
IENTRY < 4, new values must be assigned to FFORW and FBACK before calling FDCORE.

INFORM indicates the final result of FDCORE, as follows.
Value Definition

0 The algorithm terminated successfully. The forward-difference es-
timate FDOPT and the central-difference estimate computed with HPHI
agree to at least hall a decimal digit.

1 The function appears to be constant. The variable HOPT is set to the
value & (equation (3)) corresponding to a well scaled problem, and HPHI
is set to 10A; FDOPT, SDEST and ERRBND are set to sero.

2 The function appears to be linear or odd. The variables HOPT and HPHI
are set to the smallest interval with acceptable bounds on the rela-
tive condition error in the forward- and backward-difference estimates.
The variable FDOPT is set to the corresponding forward-difference es-
timate, and SDEST is set to sero.

3 The second derivative of the function appears to be so large that
it cannot be reliably estimated. The variables HOPT and HPHI are
set to the smallest trial interval; FDOPT and SDEST arc set to the
corresponding finite-difference estimates.

* This section need not be read by those calling FDCALC directly.
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FDCORE/10 8" INPUT/OUTPUT PARAMETERS OF FDCORE

CDSAVE

FDSAVE

FFORW

4 The algorithm terminated with an apparently acceptable estimate of
the second derivative. However, the forward-difference estimate with
HOPT and the central-difference estimate with HPHI do not agree to half
a decimal place. This value of INFORM usually occurs when the first
derivative is small. In this case, although the derivative estimates will
probably have poor relative accuracy, the interval is still likely to be
acceptable.

is the count of the iteration within FDCORE.

is usually the value of the central-difference derivative estimate with the input value of
H. When IENTRY = 4 on entry to FDCORE, the value of CDEST is not altered.

is the central-difference estimate computed with HSAVE if HSAVE is positive. Otherwise,
CDSAVE is undefined.

is a bound on the estimated error in the final forward-difference approximation. (When
INFORM = 1, ERRBND is set to sero.)

must be defined by the calling routine as follows. If IENTRY < 4 on exit from FDCORE,
FBACK must be set to the value of f(X — H) before the next call of FDCORE. FBACK need
not be defined by the calling routine when IENTRY = 0 on entry to FDCORE, or when
IENTRY = 4 or 5 on exit from FDCORE.

is the “best” forward-difference estimate of the first derivative after the final exit from
FDCORE. If INFORM = 0 or 4, FDOPT is the forward-difference estimate computed with
HOPT. Otherwise, FDOPT is defined as described above under INFORM.

is the value of the forward-difference approximation computed with HSAVE when HSAVE
is positive. Othcrwise, FDSAVE is undefined.

must be defined by the calling routine as follows. If IENTRY < 5 on exit from FDCORE,
FFORW must be set to the value of f(X + H) before the next call of FDCORE. FFORW need
not be defined by the calling routine when IENTRY = 0 on entry to FDCORE, or when
IENTRY = 5 on exit from FDCORE.

is the current value of the difference interval. On entry to FDCORE (after the first call),
H is the interval for which the new function values have been evaluated. On exit from
FDCORE, H is the interval for which new function values should be computed.

is the final cstimate of the “optimal” forward-differcnce interval when FDCORE terminates
with INFORM = 0 or 4. The values assigned to HOPT for other valucs of INFORM are
described above under INFORM.




130 100 R AT A B R e S I A BeAC SIOR SIS IMACRC AR TRICAST ISl St et R S R b Se S it diar o T W T T e e W

.......................

8° INPUT/OUTPUT PARAMETERS OF FDCORE FDCORE/11

{ HPHI is the interval used to compute the final estimate of the second derivative when FDCORE
oy terminates with INFORM = 0 or 4. The values assigned to HPHI for other values of
= INFORM are described above under INFORN.

HSAVE is set to —1 in FDCORE when IENTRY = 0. Thereafter, a positive value of BSAVE on
exit from FDCORE is the smallest interval for which the bounds on the relative condition
error in the forward- and backward-difference approximations are acceptable.

OLDH is the value of H from the previous call of FDCORE.

SDEST is the best estimate of the second derivative (the one used to compute HOPT) when
e INFORM = 0 or 4. The values assigned to SDEST for other values of INFORM are described
above under INFORM.

SDSAVE is the estimate of the second derivative computed with HSAVE if HSAVE is positive on
exit from FDCORE.
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FDCORE/13 9. AUXILIARY SUBPROGRAMS AND LABELLED COMMON

9. AUXILIARY SUBPROGRAMS AND LABELLED COMMON

The subroutine FDCORE requires two auxiliary subprograms MCHPAR and QUOTNT. The
subroutine MCHPAR sets the machine-dependent parameters in the WMACH array, which is stored
in the labelled COMMON block SOLMCH (see Section 11). QUOTNT is a function subprogram that
computes the quotient of two real numbers, safeguarded against overflow.

The subroutines FDCORE and FDCALC use the labelled COMMON block SOLMCH, whose contents
are defined in Section 11.




10. ERROR RECOVERY FDCORE/13

10. ERROR RECOVERY

Whenever the value of INFORM from FDCORE is non-zero for no apparent reason, the user should
re-run FDCORE with the parameter DEBUG set to .TRUE., in order to obtain a detailed printout of
each iteration within FDCORE. The main quantities of interest are FDCERR, the estimated condition
error in the forward-difference approximation, and SDCERR, the estimated condition error (2) in

5 the second-derivative estimate.
'_5 Termination Recommended Action
INFORM = This value occurs when the estimated relative condition error in the first

derivative approximation is unacceptably large for every value of the
finite-difference interval. If this happens when the function is not con-

X stant, the initial interval may be too small; in this case, the constants ETA
and OMEGA in (3) may be changed in the DATA statements of FDCORE. This
x error may also occur if the function evaluation includes an inordinately
; large constant term, or if EPSA is too large.
A
?} INFORM == 2 In this case, the estimated relative condition error in the second deriva-
tive approximation remained large for every trial interval, but the es-

i timated error in the first derivative approximation was acceptable for at
‘ least one interval. This usually means that the function is linear or odd.
If it is not, the user should check whether the estimated relative condi-

by tion error in the second derivative (SDCERR in the printout) appears to be
decreasing as the trial intervals increase. If so, it may be worthwhile to
::: alter the ETA and OMEGA in (3) so that the initial trial interval is larger,
’ﬁ or to allow more iterations by increasing KMAX (see Section 2).

g3

2 INFORM = 3 This value occurs when the relative condition error estimate in the
7 second derivative remained very small for every trial interval. This
"-'; usually occurs when the second derivative is extremely large (e.g., near
i: a singularity). If this is not the case, the user should check whether the
! value of SDCERR in the debug printout is increasing as the trial intervals
" decrease. If so, it may be worthwhile to alter ETA and OMEGA so that the

initial interval is smaller, or to increase KMAX (see Section 2). This error
N may also occur when the given value of EPSA is not a good estimate of
a bound on the absolute error in the function (i.e., EPSA is too small).

”

" INFORM = 4 The usual reason that the forward- and central-difference estimates fail

o

= to agree is that the first derivative is small. If the first derivative is not

. small, it may be helpful to execute the procedure at a different point.

w

!
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FDCORE/14 11. IMPLEMENTATION INFORMATION

11. IMPLEMENTATION INFORMATION

Both FDCORE and FDCALC have been written in ANSI (1966) Fortran and tested on an IBM
3081 computer using the WATFIV Compiler (Version 1, Level 8). All subroutines are PFORT-
compatible (Ryder, 1974). Before the first call of FDCALC or FDCORE, the subprogram MCHPAR
must be called to assign various machine-dependent parameters. These parameters are stored in
the array WMACH(15), which is stored in the labelled COMMON block SOLMCH.

The version of MCHPAR provided by the Systems Optimization Laboratory contains the para-
meters associated with double precision on a machine in the IBM 370 series (a listing of the IBM
version of MCHPAR is given in Section 12). The user must substitute a version of MCHPAR that is
appropriate for the machine to be used. The specification of MCHPAR is

SUBROUTINE MCHPAR
REAL WMACH
COMMON /SOLMCH/ WMACH(15)

The first eleven components of the REAL array WMACH must be set in MCHPAR. The componenté
of WMACH are defined as follows.

Value Definition
WMACH(1) is NBASE, the base of floating-point arithmetic.
WMACH(2) is NDIGIT, the number of NBASE digits of precision.
WMACH(3) is EPSMCH, the floating-point precision.
WMACH(4) is RTEPS, the square root of EPSMCH.
WMACH(5) is FLMIN, the smallest positive floating-point number.
WMACH(6) is RTMIN, the square root of FLMIN.
WMACH(7) is FLMAX, the largest positive floating-point number.
WMACH(S8) is RTMAX, the square root of FLMAX.
WMACH(9) is UNDFLW, which specifies whether or not underflow is checked for in

certain computations (not relevant to FDCORE).

WMACH(10) is NIN, the file number for the input stream.

WMACH(11) is NOUT, the file number for the output stream.




1 5020y,

a‘;’

T, _
e 2l & QN3 W o dadad

R

ST

11. IMPLEMENTATION INFORMATION

FDCORE/15

The values of NBASE, NDIGIT, EPSMCH, FLNIN and FLMAX for several machines are given in the
following table, for both single and double precision; RTEPS, RTMIN and RTMAX may be computed
using Fortran statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCH, FLNIN and FLMAX. The first value is a
Fortran decimal approximation of the exact quantity; use of this value in MCHPAR should cause
no difficulty except in extreme circumstances. The second value is the exact mathematical

representation.
Table of machine-dependent parameters
Variable ; IBM 360/370 | CDC 6000/7000 | DEC 10/20 | Univac 1100 DEC VAX
Single Single Single Single Single
NBASE 16 2 2 2 2
NDIGIT 8 48 27 27 24
EPSMCH 9.54E-7 7.11E-16 7.46E-9 1.50E-8 1.20E-7
16-8 9-47 9-27 9-26 9-23
FLMIN 1.0BE-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
lo-lﬂ 2-’18 2-!39 2-129 2-138
FLMAX = 1.0E+75 1.0E+322 1.0B+38 1.0E+38 1.0E+38

t 1693(1-1678) | 21070(1-9-48)

21110 -2 —31)

2121(] _2-21)

2121(1 _2-!4)

Variable | IBM 360/370 | CDC 6000/7000 | DEC 10/20 | Univac 1100 DEC VAX
Double Double Double Double Double
NBASE 16 2 2 2 2
NDIGIT 14 96 62 61 56
EPSMCH 2.22D-16 2.63D-29 2.17D-19 8.68D-19 2.78D-17
16-13 2—95 2-.’ 2—60 2—58
FLMIN 1.0D~-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38
10-“ 2-015 2-139 2-1028 2-128
FLMAX 1.0D+76 1.0D+322 1.0D+38 1.0D+307 1.0D+38
‘ 1693(1-16-14) | 2'070(1-2-96) | 9127(1_9-63) | 91033(;_g-61) | 9127(;_9-56)
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12. EXAMPLE PROGRAM AND OYTPUT
. This section contains a listing and the computed results from a sample main program that
) calls FDCALC to obtain a set of intervals for the following four-variable function
. 4
3 Fl@) =Y /=),
X [ )]
’ where
- () =26 + 44
A fa(t) = exp(102);
: f3() = 10748 + 4
S fo(t) =263 — 2.5¢% —¢.
2 (Note that F is the sum of univariate functions.) The analytic first and second derivatives of the
3 functions {f;} are:
2 Jl=168% 44, fr=13
15 =10exp(10t), f{ = 100exp(10¢);
_ Ji=0002t+1, f§ = .0002;
A fi=62-5t—1, fI=12-5.
.: The point at which derivatives are to be estimated is £ = (1, .25, 10, 1 + /€, )7, where ¢,,
& is the machine precision. The corresponding values of F' and {f;} (to fifteen figures) are
F(z) = 26.6924939607035;
b Silz1)= 6.0 fa(z2) = 12.1824939607035;
\‘ j’;(z;)= 10.01; f4(24) = -1.5.
¥ The exact gradient at this point (to 15 figures) is
4
¢ VF(z) = (10, 121.82493060703, 1.002, 7./, + 6¢,)7,
9
. and the exact Hessian diagonals are
; 12, 1218.2493960703, 2X 1074, and 7+ 12/c,.
. The computed results were obtained on an IBM 3081 computer with double precision arith-

?.' metic (¢, = 2.2 X 10~16),

X 't’\f o, ",l‘\f.‘".r..-.- « .
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£
R
A
w2
:.".: 1 €  WHHAHHHHHHRHHHHHHHHHHEHHHHRHHHAHRHHHAHHRHRHRHHHHAHHA AR
»d 2 C SAMPLE MAIN PROGRAM FOR TESTING SUBROUTINES FOCALC AND FDCORE
.'-: 3 C HNITH G-VARIABLE EXAMPLE.
4 C
5 C DOUBLE PRECISION VERSION 2.1. JUNE 1983,
v o 6C
2 7 C SYSTEMS OPTIMIZATION LABORATORY, DEPARTMENT OF OPERATIONS RESEARCM,
%" 8 C STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305,
s 9C
".:\ 10 € HHAHHHHHHHHEHEHHHHHHHRHHEHHHHHHHHRHEHHHEHHHHHHHHHHHHHHHHHHHHRHHR
o f11¢C
> 12 INTEGER MSGLVL, N, NUMF, NUMOK
13 INTEGER INFO(&)
14 DOUBLE PRECISION EPSA, EPSMCH, FX
'l‘\' 15 DOUBLE PRFCISION GRAD(4), HCNTRL(G), RESSD(4), RFORN(&), X(4)
A 16 C
~g 17 C TNHE ARRAY MMACHU15) IN THE LABELLED COMMON AREA SOLMCH CONTAINS
=y 18 € MACHINE-DEPENDENT QUANTITIES NEEDED BY FDCALC AND FOCORE.
X 19 € THE MMACH ARRAY IS INITIALIZED BY CALLING THE SUBROUTINE MCHPAR.
20C
21 DOUBLE PRECISION NMACH
= 22 COMMON /SOLMCR/ WMACH( 15)
N 23 EXTERNAL FUN
3 2 ¢
I:: 25 DOUBLE PRECISION DABS, DSQRY
L3, 26 C

27 C THE SUBROUTINE MCHPAR INITIALIZES THE MWMACH ARRAY IN THE
LABELLED COMMON AREA SOUMCH.

[ d
[
(2}

2% C
e 30 CALL MCHPAR
¥ 31 EPSMCH = WMACH(3)

O
>

N =4

P ' l‘.'.l ¥
TSOPRYY

MSGLVL = 1 HWILL GIVE A SUMMARY PRINTOUT FOR EACH VARIABLE.

283849 UR
non 000 o

_ MSGLVL = ¢
,_23 SET THE POINT AT WHICH THE DERIVATIVES ARE TO BE ESTIMATED.
N
}w X(1) 3 1.0040
%, a2 X(2) = .250%0
Ty 43 X(3) = 10.0040
p 4 X(4) = 1.0D%0 * DSQRT(EPSMCH)
o5 C
o 46 C COMPUYE EPSA, A BOUND ON THE ABSOLUTE PRECISION OF THE FUNCTION.
A 47 ¢C
S « CALL FUN € Ny Xy FX )
:-1 49 EPSA = 10.0D*ONEPSMCHW(1.0D+0 ¢ DABS(FX))
&, 50 C
N 51 CALL FOCALCC FUN, MSGLVL, N, EPSA, X,
Bag 52 " NUMF, NUMOK, INFO,
x 53 L FXy GRAD, HCNTRL, HESSD, NFORM )
4 s4 C
oy 55 sToP
% 5 C
7. 57 C
bl 58 C END OF MAIN.
%y 59 END
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60
61
62
63
64 C
65 C
66 C
67 C
68 C
69 C
70C
ne
2
73
7%
7% C
76
77
78
”
80 C
1)
82

a3
84
8 C
86
a7 c
e cC
89

LA S S G i e e A A A S O S R A M S G, N

SUBROUTINE FUN ( N, X, FX )
INTEGER N

OOUBLE PRECISION FX

DOUBLE PRECISION X(N)

SAMPLE 4-VARIABLE FUNCTION ( A SUM OF UNIVARIATE FUNCTIONS) FOR
TESTING FOCORE AND FOCALC.

INTEGER ¢
DOUBLE PRECISION FCMP(4)
DOUBLE PRECISION DEXP

FCHP(1) = 2.00%0uX(1)un3 + 4.0D*0%X(1)
FCMP(2) = DEXP(10.0D+0wX(2))

FCMP(3) = X(3) ¢ 1.00-4%X(3)un2

FOMP(4) = 2.0D%0uX(4)#n3 - 2 5D4OUX(4)#N2 - X(4)

FX = 0.00%0
B0 100X =1, N
FX = FX ¢ FCOMP(I)
100 CONTINUE

END OF FWN
END

L - P R PR !
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12. EXAMPLE PROGRAM AND OUTPUT

603 SUBROUTINE MCHPAR

606 C

607 DOUBLE PRECISION WNMACH
608 COMMON /790LNCH/ MACHL1S)
60% C

616 C NCHPAR MUST DEFINE THE RELEVANT MACNINE PARAMETERS AS FOLLOMS.
61t C NHMACH(1) = NBASE = BASE OF FLOATING-POINT ARIVHMETIC.

612 C WMACH(2) = NDIGIT = NO. OF BASE WMACH(1) DIGITS OF PRECISION.
613 C WMACH(3) = EPSMCH = FLOATING-POINT PRECISION.

614 C WMACH(4) = RTEPS = SQRT(EPSMCH).

615 C NMACH(S) = FLMIN = SMALLEST POSITIVE FLOATING-POINT NUMDER.
616 C WUCH(S6) = RTMIN = SGRTIFLMIN).

617 C MMACH(7) = FLMAX = LARGEST POSITIVE FLOATING-POINT NUMDBER.
618 C NNACH(8) = RTMAX = SQRTIFLMAX).

619 C WMACH(9) = UNDFILM = 0.0 IF UNDERFLOM IS NOT PATAL, *VE OTHERWISE.
620 C SMACH(10) = NIN = STANDARD FILE NMDER OF THE INPUT STREAN.
621 C WCH(11) = NOUT = STANDARD FILE MUMBER OF TNE QUTPUT STREANM.
622 C

623 INTEGER NBASE, NDIGIT, NIN, NOUT

624 DOUBLE PRECISION DSQRT

625 C

626 NBASE s 16

627 NDIGIT s 14

628 WMACH(1) = NBASE

629 WMACH(2) = NDIGIT

630 MMACH(3) = WMACH(1)M%(Y - NDIGIT)

63% WIACH(6) = DSQRTINMACHI3I))

632 MMACH(S) = WMACH(1)u#(-62)

633 WMACH(6) = DSQRTIMMACH(S))

6354 MMACH(7) = MMACH( 1 )wuét

635 NMACH(8? = DSERT(MMACH(7))

636 WMACH(9) = 0.00%0

637 NIN =5

638 NOUT =6

639 NMACH(10) = NIN

640 NHACH(11) = NOUT

641 C

642 C--=- IN NATFIV, ALLON UP TO 100 UNDERFLONS.
643 C-=~~ CALL TRAPS ( 0,0,100 )

644 RETURN
645 C

646 C END OF MCHPAR
647 END

FDCORE/19
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»
1
-t
.“\
i wanu# QUTPUT FROM FOCALC. DETAILS FOR VARIABLE 1
5 INFORM AND ERROR BOUND 0 1.717994D-06
ESTIMATED GRADIENT AND HESSIAN DIAGONALS 1.0000000 01  1.2000000 Of
o BEST INVERVALS FOR FORMARD AND CENTRAL DIFFERENCES  1.4316620-07  1.884864D-06
FOCALC NEEDED 3 FUNCTION EVALUATIONS FOR THIS VARIABLE
5
waun® OUTPUT FROM FDCALC. DETAILS FOR VARIABLE 2
>\ INFORM AND ERROR BOUND 8 1.7310473-05
A
N ESTIMATED GRADIENT AND HESSIAN DIAGONALS 1.2182490 02  1.218304D 03
wi BEST INTERVALS FOR FORMARD AND CENTRAL DIFFERENCES  1.420867D-08  1.178040D-07
FOCALC NEEDED 5 FUNCTION EVALUATIONS FOR THIS VARIABLE
- sunu# OUTPUT FROM FDCALC. DETAILS FOR VARIABLE 3
i INFORM AND ECROR BOUND 0 7.0136830-09
ESTIMATED GRADIENT AND HESSIAN DIAGONALS 1.0020000 00  2.0000000-04
:Z‘,j'. BEST INTERVALS FOR FORMARD AND CENTRAL DIFFERENCES  3.5068420-05  1.0366750-03
2% FOCALC NEEDED 7 FUNCTION EVALUATIONS FOR THIS VARIABLE
-
o
] auuns QUTPUT FROM FOCALC. DETAILS FOR VARIABLE &
32: INFORM AND ERROR BOUND &4 1.312046D-06
) ESTIMATED GRADIENT AND HESSIAN DIAGONALS 7.580661D-07  6.999000D 00
2y
b BEST INTERVALS FOR FORMARD AND CENTRAL DIFFERENCES  1.8746200-07  1.884864D-06
. FOCALC MEEDED 3 FUNCTION EVALUATIONS FOR THIS VARIABLE
:' ABNORMAL EXIT FOR THIS VARIABLE BECAUSE....
‘: THE FORMARD AND CENTRAL ESTIMATES ARE NOT CLOSE.
Y.ad
- TOTAL MAIMBER OF FUNCTION EVALUATIONS = 19 NUMOK =
o
.?.'
5
ST A
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